
Remote Rendering for Mobile Devices
Literature Overview

Chanchan Xu, Guangzheng Fei(&), and Honglei Han

School of Animation and Digital Arts,
Communication University of China, Beijing, China

gzfei@cuc.edu.cn

Abstract. Mobile device such as mobile phone, PDA (Personal Digital Assis-
tants), HPC (Handheld Personal Computer) and so on has become a prevalent
commodity and also a significant influence power that dominates people’s daily
life. Remote rendering over these platforms is a continuous research subject that
still attracts many people’s attention. It is also a promising topic for its extensive
usage in applications for mobile devices. It is still a challenging issue for the
limitation of the wireless network and the process ability of the client side. Here
we introduce the state of the art remote rendering techniques over mobile devices
and analyze them in order to get a clear perception and a better understanding of
this topic.

Keywords: Remote rendering � Mobile and personal devices � Compression

1 Introduction

Due to the light-weight, handheld-size, portability and availability to the internet,
mobile device such as mobile phone, PDA (Personal Digital Assistants), HPC
(Handheld Personal Computer) and so on has become a prevalent commodity and also
a significant influence power that dominates people’s daily life. More applications are
ported to it and more powerful hardware devices are developed for these applications.
This brings not only entertainment, excitement and convenience to people, but also
requirement for more complex applications such as 3D games which perform the same
quality as the video games on the computer.

Despite the growing process ability of the CPU, it is still unfeasible for 3D graphic
applications to run directly on those lightweight platforms. First, their CPU is not so
powerful enough to handle large sums of data. Second, they lack the specific graphics
hardware for GPU-based solutions to accelerate the computation process. Third, their
limited memory and lower resolution restrict the running programs and the storable
data size. Moreover, their battery usually can’t last for long. The exponential growth in
data storage capacity and collection of applications such as 3D digital museum display,
large terrain navigation and so on pushes the exploiting of the hardware capabilities to
the edge.

Remote rendering is a common and also effective solution to tackle this issue. The
idea is early introduced by Schmalstieg [1]. The application runs on a dedicated
workstation (called the server-side or server) with sufficient computation ability and

© Springer International Publishing Switzerland 2016
A. El Rhalibi et al. (Eds.): Edutainment 2016, LNCS 9654, pp. 173–181, 2016.
DOI: 10.1007/978-3-319-40259-8_15



network resources. The workstation bears most of the computation burden while only a
little computation work needs to be done on a not so powerful device (called the
client-side or client). Communication between the server and the client goes through
the internet, transferring commands of the user or results of images, video, geometry
data or other media data. In this way, the client can ease lots of workloads and can also
display relatively high quality results, which makes 3D graphics application rendering
viable for lower-end computers or mobile platforms. This stimulated the research on
remote walkthrough, remote visualization, 3D cloud games and so on lower-end
devices such as mobile devices.

However, the remote rendering also confronts with many challenging issues, such
as response latency during an interactive operation, compression for decreasing the
transmitted data amount, rendering quality at multiple resolutions of end devices, and
finally, workload distribution between the server and the client.

We survey the state of the art research techniques related to remote rendering,
especially on mobile devices, summarize and analyze them in order to get a clear
perception and a better understanding for further study. We arrange the rest of our
paper as follows: first we list state of the art techniques, classify them according to the
rendering side and analyze the quality of different categories (Sect. 2). Then the main
issues involved in remote rendering are discussed in Sect. 3. In the end, we discuss and
conclude the whole article in Sect. 4.

2 Categories of the Remote Rendering

Considering the rendering side that happens, the remote rendering can be divided into
client-side rendering, server-side rendering and hybrid rendering.

2.1 Client-Side Rendering

Rendering on the client side demands an adequate computation capability for the
hardware. Models of the scene need to be downloaded from the server and rendered on
the client. The aim is to keep the graphics which the client should render as simple as
possible while the client still can achieve satisfactory performance. Usually the
transmitted data are geometry information, including the meshes, triangles, indices,
textures and so on. That causes a high occupation of the bandwidth and a heavy render
burden for the client.

A number of approaches can be identified to tackle these problems. The classical
method of culling, including view-frustum culling, occlusion culling and back-face
culling can skip the rendering of unsighted geometry. A LOD (Level of Detail) method
can greatly simplify the complex structure of the graphics. Lluch et al. [2] designs a
multi-resolution method for diverse resolution of handheld devices by using a
view-dependent LOD strategy. For further decreasing the data that should be trans-
mitted, sending line primitives which represent the outline of the graphics [3] or point
clouds [4] for non-photorealistic rendering (NPR) will do help.

174 C. Xu et al.



2.2 Server-Side Rendering

For server-side rendering methods, an ad hoc computer, i.e., the server, which pos-
sesses sufficient resources, both on computation ability and network, takes charge of
the graphics rendering and interaction with the clients. The rendering results which
formed in 2D images, videos and so on are sent to the client through the internet.
Usually, the server side uses cluster PCs or graphics accelerators to enhance the per-
formance. The aim of this approach is to make the 2D raster image get their best
performance in a 3D interactive virtual scene. This can be achieved by decreasing the
frequency of transmitting images [5, 6] and decreasing the size of the images or videos
which have to be transmitted [7, 8].

Demand driven is a common used strategy to reduce the transmission times. Only
when a demand is sent to the server for updates, will new frames be rendered for the
client. The use of image warping can generate new frames from some reference images,
which can also decrease the frequency of sending. Shi et al. [5] employs a reference
prediction algorithm to find the viable reference images which also covers the largest
area according to some predefined motion patterns. Paper [9] compares the quality of
three main image warping methods: point splat image warping, quad splat image
warping and mesh-based image warping.

As for cutting down the images’ or videos’ size, compression and video coding
method need to be used before the transmission [10]. The server-side rendering does a
great job in remote walkthrough applications [6] and medical uses [11].

2.3 Hybrid Rendering

The hybrid rendering approaches combine both the computation resources of
client-side and server-side, aiming to limit the transferred data amount and enhancing
the rendering quality of the client. It is very suitable for digital cultural heritage models
display [12, 13] and large terrain navigation [14].

In order to protect the privacy of the original cultural heritage models from misuse
yet still provide the viewers a proper interaction for navigation, the server sends sparse
3D mesh patches [13], simplified models [15] or even point models [12] to the client
for interaction. When the interaction is over, the high-resolution map can be transmitted
to the client for display. For large terrain navigation, paper [14] divides the scene into
two parts: the one closes to the users’ position and the one far away from the user’s
position. The closer part is rendered on the client with chunks which delivered from the
server, while the far-off part is rendered on the server as impostor for the background of
the client. The efficiency relies heavily on both sides and workload distribution algo-
rithms need to be used to improve it. For more details of hybrid rendering, search
paper [16].

2.4 Analysis of the Three Methods

Below we analyze the three kinds of remote rendering in Table 1.

Remote Rendering for Mobile Devices Literature Overview 175



The client-side rendering methods are mainly limited by the capability of the client
hardware. The high occupation of the bandwidth further slows down the download and
interaction. These approaches are suitable for those in which the generation of 3D
meshes takes a far more computational amount than the rendering process. Improve-
ment methods focus on minimizing the size of the transferred data which is rendered on
the client side: LOD methods, Culling methods, Line rendering methods, Point ren-
dering methods and so on. The server-side rendering approaches ease the rendering
burden of the client side and lower down the bandwidth occupation so that the system
can run more complicated applications without considering the hardware capacity and
the hardware/software compatibility on the client-side. Image mapping and image
warping are common methods in server-side rendering techniques. However, this
comes at the expense of trade-offs, which may cause unnatural user experience in the
interaction and artifacts in the display. Compensation is a crucial method in solving the

Table 1. Analysis of client-side/server-side/hybrid rendering

Client-side rendering Server-side rendering Hybrid rendering

Render side C S C & S
Data
transmission

Geometry data
Partial model
Simplified model
Line primitives
Point cloud

Images or video
Image for mapping
Image for impostor
Video for interaction

Images and geometry
data

Images for reference
Geometry for interaction

Aim Keep graphics simple
enough

Satisfactory performance

Make 2D image fit 3D
scene

Satisfactory
performance

Limit transferred data
amount

Enhance the rendering
quality

OBWa High Low Medium
Limitations High occupation of BW

Hard-/software
compatibility

Limited resource on the
client

Risk of model data
leaking

Unnatural interaction
Artifacts on image
mapping

Artifacts on image
warping

Threshold of updating

Hard-/software
compatibility

Limited resource on the
client

Improve
approach

LOD method
Line extraction
Prefetching and
prediction

Image warping
Video compression
Video coding

Image warping
Workload distribution
Video compression and
coding

Application Small graphics and
interaction

NPR
Multi-resolution
rendering

Static or almost
static scene

Large virtual city
navigation

Remote walkthrough
Medical display

Scene with simple
interaction

Remote walkthrough
Large terrain
visualization

Heritage model display
a OBW is short for Occupied Bandwidth

176 C. Xu et al.



artifacts. For more fluent interaction, a threshold of updating frames and compression
methods should also be used. The hybrid rendering methods inherit both the limits of
the former two types: the limitation of the client resources; the high occupation of the
internet; the artifacts of the display during interaction. Model simplification methods,
image warping with depth images, video compression can greatly improve the per-
formance of the system.

3 Main Issues Involved in Remote Rendering

In this section, we summarize some of the main issues involved in remote rendering
approaches, and list them below for detailed illustrations.

3.1 Compression for Transmission

The size of data which transmitted through the internet, and further processed by the
client is crucial for the performance of the whole remote rendering pipeline. Limited by
the capacity of the client devices and the bandwidth of the network, a good com-
pression method is needed to decimate the volume of the data. According to the data
type which should be compressed, we divide the compression method into geometry
compression and image compression.

For cutting down the size of the geometry, surfaces decimation algorithms and
view-dependent strategies can help a lot. LOD methods are effective ways in getting
simplified models. Partial models lying in an interesting area/region can be extracted
and lower down the bandwidth occupation [14] according to the users’ position.
What’s more, the reconstruction of the whole scene with artistic representation like
feature lines or point clouds can reduce the volume of the data while still maintaining
the virtual environment’s nature.

As for image compression, main stream codecs lead the way. The JPEG com-
pression method can greatly decrease the size of the image (see 0.8 %*2.1 % of the
original BMP image [12]). With interaction, the server will send a short video to the
client for display. Paper [10] proposes an adaptation algorithm to optimize the video
encoding quality with an ROI based partitioning according to the depth map of the
original image. Paper [17] also applies the ROI method in video encoding. In paper
[18], a wavelet based PTC (Progressive Transform Coder) codec is used to compress
the residue of the tiles. Paper [19] uses a warping-based motion estimation method in
augmenting compression of the video on the server side with the depth information of
the external and internal camera parameters.

3.2 Quality in Display

The quality of performance on the client mainly relies on the capacity of the hardware
and the resolution of the models or images. The representation of geometry models is
independent of the client’s resolution. The qualities mainly depend on the resolution of
the model itself, i.e., the LOD. Multi-resolution of the geometry which represents

Remote Rendering for Mobile Devices Literature Overview 177



different densities of geometry cells and also different approximations of the shape can
be achieved by the LOD method and used for multiple client devices [2].

However, the quality of image-based rendering method depends heavily on the
resolution of the client [7]. Extra information of images with high-resolution will be
ignored by the client with relatively low resolution on the screen. Paper [20] uses two
types of streaming according to the target resolution of the end devices: graphics
commands for high resolution devices and graphical output for relatively low resolu-
tion devices.

3.3 Latency in Interaction

Dealing with latency in interaction is an inevitable problem with the graphics appli-
cations with which the user interact frequently. It is defined as “the time from the
generation of user interaction request till the appearance of the first updated frame on
the mobile client” [5]. The interaction latency has a great influence on the user’s
experience, especially in games. Due to [21], the tolerable latency limit in a first person
shooting game is 100 ms, but most of the remote rendering systems possess more than
that: 700+, 300+, and 200+ ms latencies in GPRS, EDGE, and UMTS cellular net-
works [22]. Ways to reduce the interaction latency can be image warping, compression
of the data, protocols for transmission and prefetching strategies.

Image warping methods can generate new view frames from some reference images
and depth images. An essential issue of image warping is minimizing the frequency and
amount of the reference images. Paper [5] proposes a novel algorithm to find the most
proper references with which the view positions of warped images cover the largest
area. Image warping method are at the price of trade-offs. Holes or sampling artifacts
can have great impacts on the image. Approaches have come out to solve the occlusion
exposure and insufficient sampling. Paper [2] reduces the latency by only sending
geometry updates to the client with a synchronization process to keep the geometry
coherence of the server and the client. Video compression codecs used for real-time
display can also be helpful in decrease the sending time of the data.

A prefetching method is very useful in the interaction of walkthrough [18, 23].
With the Grid-Lumigraph method, the arbitrary views can be reconstructed [13], still
with the help of sampling images.

3.4 Workload Distribution and Acceleration

The efficiency of remote rendering relays heavily on the both side devices’ capacities.
An efficacious splitting of workload will do a lot help in improving the performance of
the remote rendering system. This includes a splitting of the rendering burden and an
arrangement of the rendering tasks on the multiple rendering nodes or clusters.

Paper [14] splits the workload between the client and the server with scenes in close
up views rendered on the client and scenes in medium or far range in sight rendered on
the server. For serving multi-client synchronously, Neven [11] employs an algorithm

178 C. Xu et al.



based on the current frames’ noise and choose the proper render node according to a
probability density function.

As for the acceleration method, GPU based acceleration methods are normally used
for hardware acceleration, such as the Doellner’s Render Worker [6]. Paper [24] uses a
parallel rendering strategy for real time rendering.

3.5 Level of Detail (LOD)

The aim of LOD technique is to decrease the complexity of the geometry, and then
further reduce the size of data which should be computed. The kernel of LOD is how to
create the LOD, how to select the proper LOD and how to transit between two LODs.
A LOD model can be generated through a structure of Octree. Different levels of
primitives represent different levels of details. Edge collapse operation can create a
continuous change in geometry’s resolution. A simply way to select the proper LOD is
according to the distance of the viewer’s position or the projected area on the screen.
Lluch et al. [2] proposes a method to efficiently compute the difference between two
given level of details.

Strictly speaking, the LOD method is not the main issues in remote rendering, but it
is an important strategy for data compression [7, 18], progressive rendering [25],
adaptively display in resolution for the client [2]. In paper [18], the LOD method is
used with a tile-based division and stitching in the terrain rendering, and successfully
achieved a real-time frame rate (about 20–40 fps for low end client with low band-
width). Quillet et al. [7] uses a line-based rendering with LOD and reduces the data size
as about 2 Mb smaller than the method with textures in storage. In paper [25], a smooth
level of detail selection is provided for progressive rendering.

4 Conclusion

For a better understanding and a clear conception of remote rendering, we illustrate the
state of the art techniques, especially those over mobile devices. We then divide these
techniques into several groups according to the rendering side that happens, and then
introduce them with further analysis. Moreover, we list some main issues which
involved in remote rendering, including data compression for quicker transmission,
adaptable display quality for multiple end devices, lower interaction latency of instant
response, and workload distribution for more efficient performance of the remote
rendering system.

With the prevalent usage of mobile devices, demands to display more complex
graphics on these platforms will become more urgent. However, the insufficiency of
these platforms’ hardware and the wireless network resources will still remain
unchanged for quite a long time. Regardless of the hardware updates, future research
works will focus on the reducing latency method of interaction, the simplification
method of graphical models, compression method for more effective compression rates,
workload balance between the client side and server side for more sufficient use of the
hardware in both sides.

Remote Rendering for Mobile Devices Literature Overview 179



Acknowledgments. This work is supported by the National Key Technology R&D Program
under Grant No. 2012BAH62F02.

References

1. Schmalstieg D.: The remote rendering pipeline: managing geometry and bandwidth in
distributed virtual environments. Ph.D. Vienna University of Technology, Vienna (1997)

2. Lluch, J., Gaitán, R., Escrivá, M., Camahort, E.: Multiresolution 3D rendering on mobile
devices. In: Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS
2006. LNCS, vol. 3992, pp. 287–294. Springer, Heidelberg (2006)

3. Diepstraten, J., Gorke, M., Ertl, T.: Remote line rendering for mobile devices. In: Computer
Graphics International, pp. 454–461 (2004)

4. Ji, G., Shen, H.W., Gao J.: Interactive exploration of remote isosurfaces with point-based
non-photorealistic rendering. In: Visualization Symposium, pp. 25–32 (2008)

5. Shi, S., Nahrstedt, K., Campbell, R.: A real-time remote rendering system for interactive
mobile graphics. ACM Trans. Multimedia Comput. Commun. Appl. (TOMM) 8 (2012)

6. Doellner, J., Hagedorn, B., Klimke, J.: Server-based rendering of large 3D scenes for mobile
devices using G-buffer cube maps. In: Proceedings of the 17th International Conference on
3D Web Technology pp. 97–100 (2012)

7. Quillet, J.C., Thomas, G., Granier, X., Guitton, P., Marvie, J.E.: Using expressive rendering
for remote visualization of large city models. In: The 11th International Conference on 3D
Web Technology, Columbia, Maryland, USA, pp. 27–35 (2006)

8. Tizon, N., Moreno, C., Preda, M.: ROI based video streaming for 3D remote rendering. In:
2011 IEEE 13th International Workshop on Multimedia Signal Processing (MMSP), pp. 1–6
(2011)

9. Smit, F., van Liere, R., Beck, S., Froehlich, B.: An image-warping architecture for VR: low
latency versus image quality. In: Virtual Reality Conference, pp. 27–34. IEEE (2009)

10. Tizon, N., Moreno, C., Cernea, M., Preda, M.: MPEG4-based adaptive remote rendering for
video games. In: The 16th International Conference on 3D Web Technology, pp. 45–50
(2011)

11. Neven, D.M.: Interactive remote rendering. Master of Science, Computer Science, Delft
University of Technology (2014)

12. Su, C., Ping, J., Yue, Q., Xukun, S.: Protected-3DMPS: remote-rendering based 3D model
publishing system in digital museum. J. Comput. Inf. Syst. 2, 277–283 (2006)

13. Okamoto, Y., Oishi, T., Ikeuchi, K.: Image-based network rendering of large meshes for
cloud computing. Int. J. Comput. Vis. 94, 12–22 (2011)

14. Noguera, J.M., Segura, R.J., Ogáyar, C.J., Joan-Arinyo, R.: A scalable architecture for 3D
map navigation on mobile devices. Pers. Ubiquit. Comput. 17, 1487–1502 (2013)

15. Koller, D., Turitzin, M., Levoy, M., Tarini, M., Croccia, G., Cignoni, P.: Protected
interactive 3D graphics via remote rendering. ACM Trans. Graph. (TOG) 23, 695–703
(2004)

16. Schoor, W., Hofmann, M., Adler, S., Benger, W., Preim, B., Mecke, R.: Remote rendering
strategies for large biological datasets. In: Proceedings of the 5th High-End Visualization
Workshop, Baton Rouge, Louisiana (2009)

17. Makhinya, M.: Performance challenges in distributed rendering systems. Department of
Informatics, Computer Science, Knowledge and Systems, University of Zürich, Zürich
(2012)

180 C. Xu et al.



18. Deb, S., Bhattacharjee, S., Patidar, S., Narayanan, P.J.: Real-time streaming and rendering of
terrains. In: Kalra, P.K., Peleg, S. (eds.) ICVGIP 2006. LNCS, vol. 4338, pp. 276–288.
Springer, Heidelberg (2006)

19. Giesen, F., Schnabel, R., Klein, R.: Augmented compression for server-side rendering. In:
Vision Modeling and Visualization, pp. 207–216 (2008)

20. Eisert, P., Fechteler, P.: Remote rendering of computer games. In: SIGMAP, pp. 438–443
(2007)

21. Claypool, M., Claypool, K.: Latency and player actions in online games. Commun. ACM
49, 40–45 (2006)

22. Marquez, J., Domenech, J., Gil, J., Pont A.: Exploring the benefits of caching and
prefetching in the mobile web. In: Proceedings of WCITD p. 8 (2008)

23. Lazem, S., Elteir, M., Abdel-Hamid, A., Gracanin, D.: Prediction-based prefetching for
remote rendering streaming in mobile virtual environments. In: IEEE International
Symposium on Signal Processing and Information Technology, pp. 760–765 (2007)

24. Yoo, W., Shi, S., Jeon, W.J., Nahrstedt, K., Campbell, R.H.: Real-time parallel remote
rendering for mobile devices using graphics processing units. In: IEEE International
Conference on Multimedia and Expo (ICME), pp. 902–907 (2010)

25. Callahan, S.P., Bavoil, L., Pascucci, V., Silva, C.T.: Progressive volume rendering of large
unstructured grids. IEEE Trans. Visual. Comput. Graph. 12, 1307–1314 (2006)

Remote Rendering for Mobile Devices Literature Overview 181


	Remote Rendering for Mobile Devices Literature Overview
	Abstract
	1 Introduction
	2 Categories of the Remote Rendering
	2.1 Client-Side Rendering
	2.2 Server-Side Rendering
	2.3 Hybrid Rendering
	2.4 Analysis of the Three Methods

	3 Main Issues Involved in Remote Rendering
	3.1 Compression for Transmission
	3.2 Quality in Display
	3.3 Latency in Interaction
	3.4 Workload Distribution and Acceleration
	3.5 Level of Detail (LOD)

	4 Conclusion
	Acknowledgments
	References


